
A Lightweight and Effective Multi-View Knowledge
Distillation Framework for Text-Image Retrieval

Yuxiang Song1, Yuxuan Zheng1,2, Shangqing Zhao1, Shu Liu1, Xinlin Zhuang1, Zhaoguang Long1,
Changzhi Sun1, Aimin Zhou1, and Man Lan1,3,∗

1 School of Computer Science and Technology, East China Normal University, Shanghai, China
2 China Jiangxi Radio and TV Station, Nanchang, China

3 Shanghai Institute of AI for Education, East China Normal University, Shanghai, China
{yxsong, yuxuanzheng, sqzhao, shuliu, xinlinzhuang, 51265901014}@stu.ecnu.edu.cn,

czsun.cs@gmail.com, {amzhou, mlan}@cs.ecnu.edu.cn

Abstract—Large-scale dual-stream Vision-Language Pre-
training (VLP) models provide an efficient solution for text-image
retrieval tasks. Despite this, their performance often falls short of
the most current single-stream models, primarily due to limited
fine-grained text-image interactions. Recent trends indicate a
union of these two types of networks. Some methods adopt a
retrieve and rerank strategy, their performance improvements
largely hinge on the single-stream encoder during inference.
Other approaches utilize knowledge distillation to strengthen
either the single-stream encoder or the dual-stream encoder,
surpassing their previous capabilities. However, existing distillation
techniques typically focus on a single knowledge type, neglecting
the richer insights available in the teacher model. To bridge
this gap, we introduce a Lightweight and Effective Multi-View
Knowledge Distillation approach, named LEMKD, for text-image
retrieval. This method effectively utilizes response-based, feature-
based and relation-based knowledge, transferring the knowledge
from the single-stream encoder to the dual-stream encoder. Our
approach is executed on the widely used MS-COCO and Flickr30K
datasets. Results demonstrate that LEMKD not only matches
the exceptional performance of the most advanced single-stream
models but also excels in dual-stream encoder performance amidst
the recent integration of single-stream and dual-stream models.

Index Terms—text-image retrieval, knowledge distillation, multi-
modal

I. INTRODUCTION

Text-Image Retrieval (TIR) represents a critical task in cross-
modal learning, involving the retrieval of pertinent samples
from one modality by utilizing another. This process typically
embraces two subtasks: Image-to-Text (i2t) and Text-to-Image
(t2i) retrieval. With the rapid developments within the field of
deep learning, alongside the proliferation of data interaction,
TIR has evolved to become a research focus within cross-modal
learning. Consequently, it has found practical applications
in areas such as search engines, recommendation systems,
and question-answering systems [1]. Recent advancements in
Vision-Language Pre-training (VLP) [2]–[6] have significantly
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propelled text-image retrieval tasks forward. Current approaches
divide into dual-stream and single-stream models, each with
distinct architectural characteristics as depicted in Fig. 1.

Dual-stream models [6], [27], [30] allow for the pre-
computation of representations in both modalities, enabling
their persistent reuse. Despite this efficiency, their performance
often lags behind single-stream models due to limited text-
image interaction depth. In contrast, single-stream models [11],
[31], [32] excel in capturing intricate details between modal-
ities, thereby enhancing cross-modal alignment and retrieval
effectiveness. However, they face challenges in retrieval latency
during the inference phase, as each text-image pair requires
online processing through fusion modules. The need for dual-
stream models that are both lightweight and highly effective
is acute in practical applications. Bridging the gap between
the benefits of dual-stream and single-stream models has thus
emerged as a crucial research focus.

Some studies adopt a two-stage retrieve-and-rerank method-
ology. For instance, LightningDot [33], initially employs a dual-
stream encoder to identify the top−M candidates (where M is
significantly smaller than the database size) and subsequently
reranks these pairs using a slower, more powerful single-
stream encoder. [34] extends this approach, combining dual-
stream and single-stream encoders into a shared-weight model
with a parameter-efficient joint fine-tuning strategy. However,
these methods heavily depend on the single-stream encoder’s
performance, imposing substantial computational demands,
while the dual-stream encoder simply serves as a foundational
stepping stone in the structure.

As previously mentioned, our attention should be paid to
improving the efficient dual-stream encoder by utilizing the
powerful single-stream encoder. Knowledge Distillation (KD),
introduced by [12], is a promising approach to address this
issue. The single-stream encoder, acting as a teacher, generates
binary classification scores, while the dual-stream encoder,
acting as a student, produces cosine similarity scores. Both
types of scores can be used in the distillation process. Some
researchers have followed this strategy to transfer knowledge
from the single-stream encoder to the dual-stream encoder. For
instance, LoopITR [13], based on the same model architecture
as ALBEF [3], employs the original classification task-specific
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Fig. 1. Illustration of the comparison of the dual-stream and single-stream model pipelines. (a) Dual-stream model. (b) Single-stream model.

distillation approach [12] to text-image retrieval in an online
manner. It transfers the distribution of predictions from single-
stream models to dual-stream models via a cross-entropy
loss. However, this method primarily leverages response-based
knowledge [12], [18], ignoring the importance of deeper feature-
based knowledge [19], [20] and relation-based knowledge
[21]–[23]. For deep multi-modal models, merely learning the
distribution is too superficial and fails to fully utilize the other
knowledge hidden within the teacher model. Therefore, we
design a multi-view distillation method to utilize as much
knowledge as possible, improving the performance of the dual-
stream encoder by a large margin.

The principal contributions of this paper are as follows:
• We introduce a model that incorporates response-based,

feature-based, and relation-based knowledge for distilla-
tion in the TIR task, an aspect that has been previously
overlooked by other methods.

• Our multi-view knowledge distillation method (LEMKD)
significantly outperforms most recent single-stream en-
coder models and maintains state-of-the-art performance
in dual-stream encoder models, as demonstrated on the
Flickr30K and MS-COCO datasets.

• We provide the evidence that our model effectively bridges
the performance gap between the distilled dual-stream
encoder and the original joint training of single and dual-
stream encoders.

II. RELATED WORK

A. Text-Image Retrieval

TIR is a fundamental branch of information retrieval,
garnering considerable research attention. The task has made
tremendous progress in the past two years due to the large-scale
text-image datasets [14], [15] and Vision-Language Pre-training
(VLP) models [2]–[4]. These VLP models resort to dual-stream
encoder or single-stream encoder due to their interaction ways.

Early dual-stream encoder models [38], [39] employing a
two-branch deep neural network with multiple layers, achieved
limited performance. More recent studies (e.g., CLIP [6],

ALIGN [27], FILIP [28], Florence [29], BEIT-3 [30]), have
improved their performance by leveraging millions of text-
image network data. These models typically employ two distinct
encoders to encode image and text modalities, obtaining a joint
global embedding space in a decoupled manner. They then
compute their similarity score via a dot product. While this
architecture allows for independent and dynamic selection of
encoders, enhancing computational efficiency in large-scale
retrieval tasks, it falls short in modeling fine-grained semantic
alignment between image regions and text phrases.

On the other hand, single-stream encoder models [11], [31],
[32] typically utilize a single cross encoder (e.g., additional
co-attention mechanism [7]) to process the fusion sequence of
image and text modalities in an interconnected way. They then
compute matching scores via a Fully Connected (FC) layer.
In earlier works, a direct concatenation was employed after
mapping the extracted image and text features to the same
dimension, yet the effectiveness of fusion was suboptimal.
Recent works have adopted a strategy where the output
from the text encoder serves as the query, while the image
output is integrated as the key and value. These elements
are then fed into the cross encoder [2], [3], [13]. The single-
stream model permits patch/token-level interaction, facilitating
fine-grained cross-modal alignment. However, the model is
relatively cumbersome and less efficient, as it requires inputting
all information for inference, making it impractical in time-
sensitive real-world text-image retrieval scenarios.

B. Knowledge Distillation

Knowledge Distillation (KD), introduced by [12], is a
technology initially proposed to transfer knowledge with soft
targets from a teacher to a student, leading to competitive or
superior performance. It has found widespread application in
various domains, including computer vision [16], natural lan-
guage processing [17], and multi-modal fields [2]. Knowledge
manifests in diverse forms, encompassing soft target knowledge
of the output layer [12], feature maps of the hidden intermediate
layers [19], activation boundaries of hidden neurons [20] and
instance relational feature knowledge [21]–[23]. Structurally,
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knowledge can be classified into three categories [18]: response-
based knowledge [12], [24], feature-based knowledge [19], [20]
and relation-based knowledge [21]–[23].

Recent works have applied KD to text-image retrieval tasks.
[25] distill knowledge from a large dual-encoder model to a
smaller dual-encoder model through a fully connected knowl-
edge interaction graph learning method, designed to derive a
series of smaller, faster, and more effective lightweight models.
[3] propose Momentum Distillation (MoD), a self-distillation
method generating pseudo targets to enhance the single-
stream encoder’s representation ability from noisy supervision
signals, with the goal of bolstering the single-stream encoder’s
effectiveness. [13] construct score distributions for distillation
between the cross-encoder and dual encoder, combining them
in the same network for joint learning, aiming to enhance
the dual-stream encoder’s performance. Nevertheless, these
methods, irrespective of their purpose, overlook or underutilize
feature-based and relation-based knowledge in the distillation
process. Unlike previous works concentrating on one type of
KD in text-image retrieval, our objective is to leverage multiple
types of knowledge to enhance the dual-stream student model’s
performance, enabling it to encapsulate as rich structural
knowledge as the single-stream teacher model.

III. METHODOLOGY

In this section, we outline our comprehensive approach
to enhance the performance of dual-stream encoders in TIR
tasks through Multi-view knowledge distillation. Section III-A
and III-B present the model architecture and pre-training
objectives of our proposed method LEMKD. It is designed to
capitalize on three distinct types of knowledge: response-based,
feature-based, and relation-based during the distillation process.
In Sections III-C, III-D and III-E, we delve into the three
distinct types of knowledge and detail how each knowledge
type is distilled and integrated into the dual-stream encoder,
addressing their unique contributions and roles in enhancing
model performance. Section III-F introduces the total loss
computation of our method.

To provide a metaphorical description for our methodology,
we draw on an ancient Chinese proverb: ”Give a man a fish,
and you feed him for a day; teach a man to fish, and you feed
him for a lifetime”. In this metaphor, response-based knowledge
is likened to providing the fish, offering immediate but limited
nourishment. Feature-based knowledge is analogous to teaching
the act and behavior of fishing, equipping the model with tools
for independent learning. Relation-based knowledge imparts
the methods and techniques of fishing, ensuring a deeper, more
systemic understanding and application. These three types of
knowledge are crucial for improving model performance.

A. Model Architecture

We show an overview of our implementation of the proposed
LEMKD architecture in Figure 2. LEMKD mainly consists of
two parts. The first part is the dual-stream encoder and the
other part is the single-stream encoder.

1) Dual-stream Encoder Module: This module comprises
two encoders: the image encoder and the text encoder. Each
Transformer layer, whether in the image encoder or the
text encoder, consists primarily of layers with self-attention
mechanisms and feed-forward networks (FFN).

Given an image and a caption, the image is transformed
into a sequence of patch embeddings I = {icls, i1, . . . , iN},
and the text is transformed into a sequence of text embeddings
T = {tcls, t1, . . . , tN}, where icls and tcls represent the
[CLS] token embedding. The image-to-text and text-to-image
similarity scores are calculated through a dot product:

si2t = gi (icls)
T
gt (tcls) ,

st2i = gt (tcls)
T
gi (icls)

(1)

Here, gi and gt represent the image and text projection heads
followed by a normalization operation, which transforms the
image [CLS] embedding and text [CLS] embedding to a low-
dimensional (256-d) space.

2) Single-stream Encoder Module: This module consists of a
cross-encoder transformer, where each layer primarily includes
a self-attention layer, a cross-attention layer, and a feed-forward
neural network (FFN). Multiple layers of cross-attention are
used to fuse the image patch embeddings I = {icls, i1, . . . , iN}
and text token embeddings T = {tcls, t1, . . . , tN}. Text
features are fused with image features through multi-modal
fusion operations at each layer. Subsequently, after acquiring the
joint representation from the last layer J = {jcls, j1, . . . , jN}
and extracting the [CLS] output embedding jcls, we employed
a linear head followed by a softmax operation to derive the
matching scores:

m = Softmax (hhead (jcls)) (2)

Here, hhead represents the linear head, and the softmax operation
transforms the combination of the image and text [CLS]
embedding into a two-class probability.

B. Pre-training Objectives

Due to the substantial cost of pre-training and remarkable
performance, we used a pre-trained VLP model BLIP [2], which
has two understanding-based objectives and one generation-
based objective. In text-image retrieval tasks, we only use
two primary pre-training objectives in our model fine-tuning
process:

(i) Image-Text Contrastive Loss (ITC). Employed for training
the dual-stream encoder, the learning objective is to ensure that
the correctly positive image-text pairs are closer while pushing
the negative samples farther away. It has been proven effective
in many previous works [3], [6].

(ii) Image-Text Matching Loss (ITM). It is used for training
the single-stream encoder. It is dedicated to learning the multi-
modal representation of image-text pairs and capturing the
fine-grained fusion representation between the two modalities.
It is a binary classification task, where the model uses a linear
layer to predict whether an image and text pair is a match or not.
Moreover, ITC serves to assist ITM in mining more negative
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Fig. 2. Details of our method: the architecture consists of two modules, including a dual-stream student model and a single-stream teacher model. The
dual-stream model includes an image encoder and a text encoder, while the single-stream model includes a cross-encoder. All encoders are implemented as
transformers. In our LEMKD framework, the training objective of the student model is the Image-Text Contrast (ITC) loss, and the training objective of the
teacher model is the Image-Text Matching (ITM) loss. The teacher is distilled through response-based knowledge, feature-based knowledge, and relation-based
knowledge. For simplicity, the hard sample mining process is not shown in this figure.

samples. Negative pairs with high contrastive similarity in a
batch are selected for the loss calculation.

C. Response-based Knowledge Distillation

Response-based knowledge refers to the neuron units noted
in the final output layer of the teacher model. This simple yet
highly effective form of knowledge distillation was proposed
in [12] and its capabilities often match or even surpass
those of the teacher model. Many previous distillation-related
studies, including [3], [13], [25], primarily adopted this type
of knowledge in the context of multi-modal tasks. However,
they selectively opted for certain hard negative samples when
distilling from matching scores, thereby disregarding similarity
scores derived from the dual-stream model that envelops all text
as well as image samples. Therefore, we propose that single-
stream models should take all negative samples into account for
a well-rounded understanding and approach. Furthermore, we
prefer to directly measure the deviation between the student’s
and teacher’s values. Hence, we have applied the Mean Squared
Error (MSE) in our experiments for distillation from matching
scores to similarity scores. It has been proven to yield more
accurate results compared to previous methods.

After obtaining the similarity scores si2t, st2i and matching
scores m. We initially perform a reshape operation on the output
from the single-stream encoder and then concatenate each batch
of image and text embeddings to get the representation of
mResponse. As illustrated in Fig. 2, the response-based knowledge
distillation loss is calculated as follows:

LResponse =
1

N

N∑
n=1

(mResponse
n − si2t

n )2 +
1

N

N∑
n=1

(mResponse
n − st2i

n )2 (3)

Here, N is the number of selected image and text samples,
mResponse is the response-based knowledge from the single-

stream teacher model, and si2t and st2i are the image-to-text
and text-to-image outputs from the dual-stream student model.
Note that our objective is to maintain the parameters of the
teacher model unchanged, so we halt the gradients from back-
propagating when calculating mResponse.

D. Relation-based Knowledge Distillation
Relation-based knowledge, as its name suggests, highlights

various levels and data samples per input’s intricate relation-
ships. Notably, it offers a relationship map to facilitate the
student model in acquiring the relational knowledge ingrained
in the teacher model.

Solely deploying output-to-output response-based distillation
may not be optimal for fostering a comprehensive understand-
ing of the knowledge to be transferred. As such, we also
introduce relation-based knowledge for distillation to import
the relational knowledge that exists between the teacher and
student models. In our approach, we directly leverage the scores
derived from the output layer, as outlined in Section III-C, and
denote these scores as mRelation. Additionally, we integrate two
elemental relationships into our methodology for knowledge
distillation: distance-wise and angle-wise relations.

We utilize the Euclidean distance metric to measure the
correlation between the student and teacher model for distance-
wise relation. Meanwhile, the angle-wise relation is determined
by calculating the two models’ inner product. To expedite the
knowledge transfer process, we employ the Smooth L1 loss
[36]. Here’s the conduction of the necessary computations:

Ldist =
1

N

∑
(i,j)∈K2

SL1
(

1

ψ(m)

∥∥mRelation
i −mRelation

j

∥∥
2
,

1

ψ(s)

∥∥si2ti − st2ij

∥∥
2

)
,

Langle =
1

N

∑
(i,j)∈N2

SL1
(

1

ψ(m)

∥∥mRelation
i −mRelation

j

∥∥
2
,

1

ψ(s)

∥∥si2ti − st2ij

∥∥
2

)
,

ψ(x) =
1

|N2|
∑

(i,j)∈N2

∥xi − xj∥2

(4)
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where N2 = {(i, j) | i ̸= j, 1 ⩽ i, j ⩽ N}, mRelation is the
relation-based knowledge from the single-stream teacher model,
ψ(·) acts as normalization factor for distance and angle, and
SL1 refers to Smooth L1 loss.

As demonstrated in “(4)”, the method allotted more weight
to the relationship between teacher and student samples in
terms of relational knowledge. The expression for loss is:

LRelation = wdist · Ldist + wangle · Langle (5)

Here, wdist and wangle denote the weights of the distance
relation and the angle relation respectively, and can be adjusted
during the training process.

E. Feature-based Knowledge Distillation

Feature-based knowledge typically refers to the information
or features captured in intermediary layers, such as attention
maps created by the teacher model. These maps encapsulate
high-dimensional and in-depth information about the input data.
Recent studies have demonstrated the application of transferring
cross-attention maps in several works within both NLP and
CV fields. The potential application of these maps also extends
to multi-modal tasks.

Attention mechanisms serve as a valuable component of
neural networks due to their ability to mediate computation
between elements. The attention matrix is computed as follows:

attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (6)

Where Q and K represent the query and key in the attention
layer of the transformer block, while V indicates this layer’s
value. dk serves as a scaling factor for the key’s dimension.

However, due to the inherent structural differences between
single-stream and dual-stream models, transferring feature-
based knowledge on a layer-by-layer basis poses a significant
challenge. After extensive trials, we decided to employ an
average aggregate strategy and use the final transformer layer
data from the teacher model for knowledge distillation. The
advantage of this approach is that the attention maps of
the final transformer block provide the student model with
comprehensive and detailed knowledge. Simultaneously, the
complexity of the task is significantly reduced by eliminating
the need to identify the optimal layer mapping.

Firstly, the attention map was extracted from the final layer
of the single-stream model. Subsequently, we calculated the
average of the attention scores—averaging across both attention
heads and tokens. The computation of the average attention
scores is detailed as follows:

avg =
1

H · |S|

H∑
h=1

|S|∑
s=1

(attentionN,h,s) (7)

Where H and S represent the number of attention heads and
sequence length, respectively. N is the number of layers in
the teacher model, while attentionN refers to the attention
distribution of the teacher model’s N th layer.

Following this, the average attention scores were used to
determine the weighted token vectors wscore for each text and

image sample. The classification scores were then determined
using the classification head hhead , and we further applied a
softmax operation to derive the predicted probability scores
mFeature. As illustrated in Fig. 2, by capturing the attention
scores from the teacher model’s intermediate layer, we express
the feature-based knowledge distillation loss thusly:

LFeature =
1

N

N∑
n=1

(mFeature
n − si2tn )2 +

1

N

N∑
n=1

(mFeature
n − st2in )2,

mFeature = Softmax (hhead(wscore)) ,

wscore =
S∑

s=1

Js · avgs

(8)

where wscore denotes the weighted token vectors, while
mFeature signifies feature-based knowledge from the single-
stream teacher model.

F. Overall loss function

In our training process, the total loss used for training the
student model is as follows:

L = LITC + LITM + λ1LResponse + λ2LFeature + λ3LRelation (9)

Where LITC and LITM are the ITC and ITM loss used in
[2], λ1, λ2, λ3 are hyperparameters used to balance the various
distillation loss in the same scale.

IV. EXPERIMENT

A. Baselines

In assessing the effectiveness of our approach, we set it
alongside some of the most advanced models in recent years
for comparison. Our method employs three forms of knowledge
distillation from the single-stream to dual-stream encoder, with
the dual-stream encoder’s performance being our primary focus.
Hence, we initially selected a range of strong baselines based
on the single-stream encoder, including UNITER [31], VILLA
[37], OSCAR [11], and VinVL [32], as their works are primarily
oriented towards cross-encoder performance. Subsequently,
due to LEMKD assimilates knowledge from the single-stream
model, we compared our method with competitive baselines
that employ a strategy of integrating both types of encoder
to attain notable performance in the dual-stream encoder,
such as LightningDot [34], RerankSmart [33], and LoopITR
[13]. Lastly, to emphasize the performance gap and speed
improvement between the distilled dual-stream encoder and
the original joint training of both encoders, we conducted an
experiment comparing our method with LoopITR [13], which
employs just one type of knowledge distillation (response-
based) in text-image retrieval.

B. Datasets and Metrics

We executed experiments on the MS-COCO and Flickr30K
benchmarks to manifest the effectiveness of our approach.

(1) MS-COCO1, a large-scale image-text dataset, comprises
123,287 images, each accompanied by five annotations. We

1https://cocodataset.org/
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TABLE I
EXPERIMENTAL RESULTS FINETUNED ON MS-COCO AND FLICKR30K DATASET. THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLD, AND THE SECOND

BEST IS UNDERLINED.

Model
MS-COCO(5K test set) Flickr30K (1K test set)

#Trainable Text → Image Image → Text Text → Image Image → Text
Params Rmean R@1 R@5 R@10 Rmean R@1 R@5 R@10 Rmean R@1 R@5 R@10 Rmean R@1 R@5 R@10

single-stream encoder
UNITER [31] 303M 72.0 50.3 78.5 87.2 81.6 64.4 87.4 93.1 87.0 72.5 92.4 96.1 93.9 85.9 97.1 98.8
VILLA [37] 303M - - - - - - - - 87.8 74.7 92.9 95.8 94.6 86.6 97.9 99.2
OSCAR [11] 345M 74.4 54.0 80.8 88.5 85.5 70.0 91.1 95.5 - - - - - - - -
VinVL [32] 345M 77.1 58.1 83.2 90.1 87.8 74.6 92.6 96.3 - - - - - - - -

dual-stream encoder
LightningDot [33] + UNITER 306M 72.2 50.3 78.7 87.5 81.9 64.6 87.6 93.5 87.3 72.6 93.1 96.1 94.3 86.5 97.5 98.9
RerankSmart [34] + OSCAR 345M 75.0 54.7 81.3 88.9 85.7 70.8 91.0 95.2 88.7 76.4 93.6 96.2 95.4 89.4 97.7 99.0

LoopITR [13] 233M 72.8 51.7 79.2 87.5 84.5 67.6 90.5 95.4 89.7 77.2 94.3 97.6 95.9 89.6 98.6 99.5
LEMKD 223M 75.8 57.0 81.6 88.9 88.4 75.5 92.9 96.8 92.0 82.2 95.8 97.9 98.1 94.7 99.8 99.9

TABLE II
COMPARISON WITH PREVIOUS DISTILLATION WORK ON THE FULL FLICKR

1K TEST SPLIT DATASET. THE COLUMN △R SHOWS THE GAP BETWEEN
THE DISTILLED DUAL-STREAM ENCODER AND THE JOINT TRAINING OF

SINGLE AND DUAL-STREAM ENCODERS. TIME REPRESENTS THE
INFERENCE TIME COSTS (SECONDS).

Model
Flickr30K (1K test set)

Total
△R TimeTrained Encoder Text→ Image Image→ Text

R@1 R@5 R@10 R@1 R@5 R@10 Rmean

LoopITR [13] Dual(distilled) 77.2 94.3 97.6 89.6 98.6 99.5 92.80
2.43

11
ALBEF [3] Single+Dual 82.8 96.7 98.4 94.3 99.4 99.8 95.23 117

LEMKD Dual(distilled) 82.2 95.8 97.9 94.7 99.8 99.9 95.05
1.78

12
BLIP [2] Single+Dual 87.3 97.6 98.9 97.3 99.9 100.0 96.83 255

resorted to the Karpathy split method for allocation: setting
aside 5,000 images for testing, 5,000 for validation, and
utilizing the remaining 113,000 images for training.

(2) Flickr30K2, encompasses 31,000 images and 158,915
annotations, generally denoted by five annotations per image.
Following the split method as per [26], we used 1,000 images
for testing, 1,000 images for validation, and the remaining
29,000 for training.

In keeping with previous studies [2], [3], [13], we adopted
R@k (k = 1, 5, 10), Rmean, and Rsum as our evaluative
metrics, to provide a fair and comprehensive comparison
with existing cross-modal retrieval models. Specifically, R@k
denotes the proportion of matching samples within the top-k
retrieval results; Rmean signifies their average; Rsum represents
the summation of R@1 for both t2i and i2t retrieval, which
facilitates a balanced comparison across both retrieval tasks.

C. Implementation Details

Our method employs a pre-trained model as our backbone,
initialized with the weights from the BLIP [2] model trained
on a 129M image dataset. The image encoder involves a 12-
layer Visual Transformer (ViT-B/16), and the text encoder uses
a 12-layer text transformer, namely BERTbase. Additionally,
the single-stream encoder comprises a 12-layer cross-encoder.
We run LEMKD in the same configuration and hardware
environment and the training period spanned 6 epochs on the
MS-COCO and Flickr30K datasets. Table I lists the number of
parameters of all baselines to show a setting with approximate
trainable parameters.

2https://www.kaggle.com/datasets/hsankesara/flickr-image-dataset

We employed the AdamW optimizer [35] with a weight
decay of 0.05 and utilized a cosine learning rate scheduling
strategy with a peak rate of 1 × 10−5 for model parameter
updates. A batch size of 16 was set and the image resolution was
established at 384 × 384. Considering our method’s three types
of knowledge distillation loss, we ultimately adopt the hyper-
parameters {λ1 = 6×10−1, λ2 = 3×10−1, λ3 = 1×10−1} for
Flickr30K and {λ1 = 6×10−1, λ2 = 5×10−1, λ3 = 1×10−4}
for MS-COCO. Additionally, we set wdist to 25 and wangle to
50 as constants for relation-based knowledge distillation. These
values were diagnosed by evaluating the initial losses of various
types of knowledge and ensuring that all losses were on the
same order of magnitude, however, their fit for a new dataset
may require some adjustments to optimize the performance of
the model. Experiments were carried out on RTX 3090. All
other parameters were initialized with the default values from
[2], and the model was implemented via Transformers [7].

D. Experimental Results and Analysis

Table I provides the main results of two distinct models
for t2i and i2t retrieval performances on the MS-COCO
and Flickr30k datasets. Table II depicts the performance gap
between the distilled dual-stream encoder and the original joint
training of the two corresponding encoders. Through analysis
of these data, we can reach the following conclusions.

Firstly, as shown in Table I, LEMKD matches the perfor-
mance of advanced single-stream models in most cases, with a
minor underperformance in the t2i retrieval on the MS-COCO
dataset. This suggests that the multi-view distillation provides
a more comprehensive view of the single-stream encoder,
thereby enabling the dual-stream encoder’s performance to
be comparable to that of single-stream encoders.

Secondly, as indicated in Table I, our model makes tangible
advances in dual-stream encoder performances compared with
previous works utilizing a cooperative retrieve and rerank strat-
egy [33], [34] and the distillation study transferring knowledge
from single-stream to dual-stream encoder [13]. Specifically,
our approach achieves improvements (average in t2i and i2t
task) of 5.05%, 1.75%, 3.45% (MS-COCO) and 4.25%, 3.00%,
2.25% (Flickr30k) in Rmean. These results highlight the impact
of three typical forms of knowledge incorporation in enhancing
dual-stream encoder retrieval performance.
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Thirdly, as presented in Table II, LEMKD clearly outper-
forms the previous distillation work LoopITR [13]. It not only
performs a more competitive performance against the previous
joint training model with a slight 1.78% gap in △R, but also
strikes a balance between efficiency and effectiveness during
the inference period, leading to a 21x speed improvement.
The improvements suggest that each type of knowledge does
produce results and offers unique information, promoting a
comprehensive and nuanced data understanding. Moreover, This
equilibrium is credited to the strategic use of knowledge from
the single-stream encoder and the inherent efficient feature of
the dual-stream encoder.

E. Ablation Study

In this subsection, we conduct several ablation studies on
the Flickr30k dataset to further explore the effect of each
distillation component and the different experiment settings on
the results in the proposed LEMKD framework.

1) Effect of Each Distillation Component: Table III shows
the results of the ablation study of each distillation component
in LEMKD. We intend to explore whether each knowledge
contributes to helping text-image retrieval. As shown in Table
III, we can observe that each knowledge component improves
performance, especially the response-based and feature-based
knowledge. Moreover, Combining the above three knowledge
types leads to the best results, bringing about a 3.1 Rsum
increase compared to the original model. Comparing the last
two columns, it proves that these three types of knowledge from
the single-stream model have their unique parts and overlapping
parts, but we have utilized them together effectively.

TABLE III
ABLATION STUDY FOR EACH PART OF THE DISTILLATION COMPONENT.

Model dual dual

w/o distillation distillation
responsed-based - ✓ - - ✓ ✓

feature-based - - ✓ - ✓ ✓
relation-based - - - ✓ - ✓

Rsum 173.8 176.2 176.3 175.5 176.4 176.9

2) Analysis of Various Methods in Response-based KD
and Layers in Relation-based KD: We conducted an analysis
to investigate the specific contributions of various methods
for Response-based KD and various layers for Relation-based
KD. Table IV provides a comparison of these two types of
knowledge, employing different distillation methods or layers
for a closer analysis of their impact.

For the response-based knowledge distillation, we utilized
the Mean Squared Error (MSE) and Cross-Entropy (CE) loss
functions as distillation methods. It is noted in the results that
MSE achieves a higher Rsum than CE. It might be attributed
to MSE’s characteristic of minimizing squared discrepancies
between the student’s and teacher’s predictions. This aligns
well with the continuous features observed in the embedding
space, as reflected in the first two rows of Table IV.

On the other hand, for the relation-based knowledge distilla-
tion, we explored the implications of distilling knowledge from
varying layers, contrasting between the output and intermediate
layers. The results show that the use of the output layer in
distillation is more effective, reflected by a superior Rsum value.
It suggests that the output layer which measures the correlation
between the student and teacher model may be more refined,
as corroborated in the last two rows of Table IV.

TABLE IV
ABLATION STUDY OF RESPONSE-BASED KNOWLEDGE DISTILLATION WITH
DIFFERENT METHODS AND RELATION-BASED KNOWLEDGE DISTILLATION

WITH DIFFERENT LAYERS.

Model method/layer Rsum

response-based
MSE 176.2
CE 174.9

relation-based
output layer 175.5

intermediate layer 173.7

3) Exploration of Different Transformer Layers and
Aggregation Methods in Feature-based KD: We explore
the influence of employing different transformer layers and
aggregation methods in the feature-based knowledge distillation
process on our framework and record the results in Table
V. It outlines the results corresponding to variations in the
transformer layers and aggregation methods used. The results in
the first row underscore the advantages of focusing on the last
transformer layer and using average aggregation for distillation.
It suggests that the setting of the last transformer layer, typically
encapsulated highly refined feature representations, combined
with average aggregation, which provides a balanced and
comprehensive overview of features, enhances the effectiveness
of the feature-based distillation process.

TABLE V
ABLATION STUDY OF FEATURE-BASED KNOWLEDGE DISTILLATION WITH

DIFFERENT LAYERS AND POLYMERIZATION WAYS.

Model layer polymerization Rsum

feature-based

last layer average 176.3
last three layers average 175.4

last layer max 175.9
last three layers max 175.6

V. CONCLUSION

This paper introduces LEMKD, an innovative method
designed to transfer multi-view knowledge from a single-
stream encoder to a dual-stream encoder for text-image retrieval
tasks. By exploiting the inherent response-based, feature-based,
and relation-based knowledge from the single-stream encoder,
our method enhances the dual-stream encoder’s performance.
Experimental results on the MS-COCO and Flickr30K datasets
confirm that our approach surpasses most existing single-stream
encoder models. Impressively, compared with previous methods
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employing both single-stream and dual-stream networks, our
model exhibits exceptional dual-stream encoder performance.
Crucially, our method provides a more balanced approach to
efficiency and effectiveness compared to previous distillation
methods. We will later explore the applicability of our approach
to text-video retrieval tasks.
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